Французский физик в честь которого названа единица силы тока

Амперметр и принцип его действия

На этом уроке мы рассмотрим измерение силы тока.

На предыдущем уроке мы говорили о том, что главной характеристикой действия электрического тока является сила тока. Поскольку сила тока – это физическая величина, то она может быть измерена. Для того чтобы измерить силу тока, используется прибор, который называется амперметр.

Слово «амперметр» состоит из двух слов. Ампер – это единица измерения силы тока, названная в честь французского учёного Ампера, а «метрио» – измерять, поэтому само название прибора говорит о том, что это – измеритель силы тока.

В основу всех амперметров положено магнитное и электромагнитное действие электрического тока: когда по проводнику протекает электрический ток, вокруг проводника наблюдается магнитное и электромагнитное действие.

Первые измерения силы тока были произведены в начале XIX века. Сам измерительный прибор был крайне примитивным: брали магнитную стрелку (компас), возле него располагали проводник, по которому протекал электрический ток, и по отклонению магнитной стрелки судили о том, электрический ток какой величины протекает по проводнику. То есть, по углу отклонения стрелки компаса делали выводы о величине силы тока.

Конечно, на сегодняшний день все эти приборы претерпели серьёзные изменения. Существует очень много различных видов амперметров. Однако все эти разновидности объединяет общий принцип: весь электрический заряд, который протекает по проводнику, должен проходить через амперметр.

Обозначение амперметра в электрической цепи

Рассмотрим, как обозначается амперметр на схемах. Перед этим вспомним, что сила тока обозначается буквой I. А единицей измерения силы тока является 1 Ампер. Как мы уже говорили, единица силы тока названа в честь французского учёного, который много сделал для исследования электрического тока и его действий (рис. 1).

  Рис. 1. Ампер

Рис. 1. Ампер (Источник)

Сам амперметр на схемах, т. е. на рисунках, которые изображают соединения частей электрической цепи, обозначают следующим образом: кружок, внутри которого написана буква А (рис. 2).

Обозначение амперметра 

Рис. 2. Обозначение амперметра

Рассмотрим теперь непосредственно сами амперметры: какие они бывают, из чего состоят, как устроены.

На рис. 3 представлены фотографии различных видов амперметров.

Различные амперметры      Различные амперметры      Различные амперметры

Рис. 3. Различные амперметры (Источник) (Источник) (Источник)

Виды амперметров и отличительные черты амперметра

Амперметры могут быть различных размеров, конструктивных особенностей, однако есть ещё одна вещь, кроме принципа работы, которая их объединяет: амперметры всегда включаются в электрическую цепь последовательно. Говорят так: мы разрываем цепь, и в место разрыва включаем прибор.

Как отличить амперметр от других приборов?

Во-первых, на всех амперметрах мы видим букву А, которая подчёркивает, что этот прибор – амперметр. Кроме того, у всех амперметров есть шкала с делениями, а также зажимы (клеммы), к которым подключаются проводники. При этом одна из клемм всегда подписывается как «+» (чтобы именно она подключалась к положительному полюсу источника тока). Вторая клемма иногда обозначается «-» (в противном случае это подразумевается по умолчанию).

Все приборы, которые представлены на рис. 3, используются для измерения постоянного тока, т. е. того тока, который создают аккумуляторы и гальванические элементы. И на всех этих приборах есть знак, который говорит об этом: горизонтальная прямая линия. Если бы на приборе была изображена волнистая линия, то это означало бы, что этот прибор используется для измерения переменного тока.

Как мы уже говорили, в основе всех амперметров лежит магнитное действие электрического тока. На рис. 4. изображено устройство амперметра: стрелка прибора укреплена на очень легкой рамке. Эта рамка находится в магните, по которому протекает ток и создается магнитное поле. В этом магнитном поле и находится рамка. Она отклоняется в магнитном поле, и стрелка показывает по шкале различные значения силы тока.

Устройство амперметра

Рис. 4. Устройство амперметра (Источник)

Если шкала прибора рассчитана на отрицательные и положительные значения, то с помощью такого амперметра можно измерять не только силу тока, но и его направление.

Как включается в цепь амперметр

Теперь подробнее рассмотрим то, как амперметры включаются в электрическую цепь (рис. 5).

Рис. 5. Включение амперметра в цепь

На рис. 5. изображены две схемы с гальваническими элементами. Короткой палочкой обозначается «-» (отрицательный полюс), а длинной – «+» (положительный полюс). Перечёркнутым кружочком обозначается лампочка накаливания, а ключ, который обозначен наклонной палочкой, в данной цепи замкнут. Кроме того, в цепь включён амперметр (кружочек с буквой А внутри).

Когда мы говорили о том, как включается амперметр, то упоминали, что положительный полюс амперметра (отмечен знаком «+») подключается к положительному полюсу источника тока.

Важен также тот факт, что амперметр можно располагать и так, как указано на левом рисунке, и так, как указано на правом. То есть, от того, что мы поменяли местами амперметр и лампу накаливания, показания амперметра не изменятся.

Дело в том, что, как мы уже говорили, амперметр включается в цепь таким образом, чтобы весь электрический заряд прошел через этот прибор. Соответственно, на любом участке цепи количество электрических зарядов, прошедших по проводнику, одинаково. Следовательно, можно говорить и о том, что амперметр показывает в обеих цепях одинаковое значение.

Краткие выводы урока: амперметр – прибор для измерения силы тока, который включается в цепь последовательно, т. е. в разрыв цепи. Амперметр показывает значение силы тока. Принцип действия любого амперметра основан на магнитном, электромагнитном действии электрического тока.

 В заключение хотелось бы уточнить ещё один немаловажный нюанс: использовать амперметр можно исключительно тогда, когда мы приблизительно знаем значение силы тока. Дело в том, что через амперметр проходит весь заряд, и если этот заряд будет слишком велик, то амперметр просто сгорит.

На следующем уроке мы познакомимся с такой характеристикой тока, как напряжение.

Список литературы

  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «Открытый урок» (Источник)
  2. Физика для всех (Источник)

Домашнее задание

  1. П. 38, вопросы 1–3, стр. 89, упр. 15 (1–4), стр. 89–90. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Ученик утверждает, что амперметр, включённый в цепь перед лампочкой, покажет большую силу тока, чем включённый после неё. Прав ли ученик?
  3. Как определить максимальную силу тока, которую можно измерить с помощью данного амперметра?

From Wikipedia, the free encyclopedia

ampere

Demonstration model of a moving iron ammeter. As the current through the coil increases, the plunger is drawn further into the coil and the pointer deflects to the right.

General information
Unit system SI
Unit of electric current
Symbol A
Named after André-Marie Ampère

The ampere ( AM-pair, AM-peer;[1][2][3] symbol: A),[4] often shortened to amp,[5] is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second.[6][7][8] It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.

As of the 2019 redefinition of the SI base units, the ampere is defined by fixing the elementary charge e to be exactly 1.602176634×10−19 C,[6][9] which means an ampere is an electric current equivalent to 1019 elementary charges moving every 1.602176634 seconds or 6.241509074×1018 elementary charges moving in a second. Prior to the redefinition the ampere was defined as the current passing through two parallel wires 1 metre apart that produces a magnetic force of 2×10−7 newtons per metre.

The earlier CGS system has two units of current, one structured similarly to the SI’s and the other using Coulomb’s law as a fundamental relationship, with the CGS unit of charge defined by measuring the force between two charged metal plates. The CGS unit of current is then defined as one unit of charge per second.[10]

History[edit]

The ampere is named for French physicist and mathematician André-Marie Ampère (1775–1836), who studied electromagnetism and laid the foundation of electrodynamics. In recognition of Ampère’s contributions to the creation of modern electrical science, an international convention, signed at the 1881 International Exposition of Electricity, established the ampere as a standard unit of electrical measurement for electric current.

The ampere was originally defined as one tenth of the unit of electric current in the centimetre–gram–second system of units. That unit, now known as the abampere, was defined as the amount of current that generates a force of two dynes per centimetre of length between two wires one centimetre apart.[11] The size of the unit was chosen so that the units derived from it in the MKSA system would be conveniently sized.

The «international ampere» was an early realization of the ampere, defined as the current that would deposit 0.001118 grams of silver per second from a silver nitrate solution. Later, more accurate measurements revealed that this current is 0.99985 A.[12]

Since power is defined as the product of current and voltage, the ampere can alternatively be expressed in terms of the other units using the relationship I = P/V, and thus 1 A = 1 W/V. Current can be measured by a multimeter, a device that can measure electrical voltage, current, and resistance.

Former definition in the SI[edit]

Until 2019, the SI defined the ampere as follows:

The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed one metre apart in vacuum, would produce between these conductors a force equal to 2×10−7 newtons per metre of length.[13]: 113  [14]

Ampère’s force law[15][16] states that there is an attractive or repulsive force between two parallel wires carrying an electric current. This force is used in the formal definition of the ampere.

The SI unit of charge, the coulomb, was then defined as «the quantity of electricity carried in 1 second by a current of 1 ampere».[13]: 144  Conversely, a current of one ampere is one coulomb of charge going past a given point per second:

{\displaystyle {\rm {1\ A=1{\frac {C}{s}}.}}}

In general, charge Q was determined by steady current I flowing for a time t as Q = It.

This definition of the ampere was most accurately realised using a Kibble balance, but in practice the unit was maintained via Ohm’s law from the units of electromotive force and resistance, the volt and the ohm, since the latter two could be tied to physical phenomena that are relatively easy to reproduce, the Josephson effect and the quantum Hall effect, respectively.[17]

Techniques to establish the realisation of an ampere had a relative uncertainty of approximately a few parts in 107, and involved realisations of the watt, the ohm and the volt.[17]

Present definition[edit]

The 2019 redefinition of the SI base units defined the ampere by taking the fixed numerical value of the elementary charge e to be 1.602176634×10−19 when expressed in the unit C, which is equal to A⋅s, where the second is defined in terms of νCs, the unperturbed ground state hyperfine transition frequency of the caesium-133 atom.[18]

The SI unit of charge, the coulomb, «is the quantity of electricity carried in 1 second by a current of 1 ampere».[19] Conversely, a current of one ampere is one coulomb of charge going past a given point per second:

{\displaystyle {\rm {1\ A=1\,{\text{C/s}}.}}}

In general, charge Q is determined by steady current I flowing for a time t as Q = I t.

Constant, instantaneous and average current are expressed in amperes (as in «the charging current is 1.2 A») and the charge accumulated (or passed through a circuit) over a period of time is expressed in coulombs (as in «the battery charge is 30000 C«). The relation of the ampere (C/s) to the coulomb is the same as that of the watt (J/s) to the joule.

Units derived from the ampere[edit]

The international system of units (SI) is based on seven SI base units the second, metre, kilogram, kelvin, ampere, mole, and candela representing seven fundamental types of physical quantity, or «dimensions», (time, length, mass, temperature, electric current, amount of substance, and luminous intensity respectively) with all other SI units being defined using these. These SI derived units can either be given special names e.g. watt, volt, lux, etc. or defined in terms of others, e.g. metre per second. The units with special names derived from the ampere are:

Quantity Unit Symbol Meaning In SI base units
Electric charge coulomb C ampere second A⋅s
Electric potential difference volt V joule per coulomb kg⋅m2⋅s−3⋅A−1
Electrical resistance ohm Ω volt per ampere kg⋅m2⋅s−3⋅A−2
Electrical conductance siemens S ampere per volt or inverse ohm s3⋅A2⋅kg−1⋅m−2
Electrical inductance henry H ohm second kg⋅m2⋅s−2⋅A−2
Electrical capacitance farad F coulomb per volt s4⋅A2⋅kg−1⋅m−2
Magnetic flux weber Wb volt second kg⋅m2⋅s−2⋅A−1
Magnetic flux density tesla T weber per square metre kg⋅s−2⋅A−1

There are also some SI units that are frequently used in the context of electrical engineering and electrical appliances, but are defined independently of the ampere, notably the hertz, joule, watt, candela, lumen, and lux.

SI prefixes[edit]

Like other SI units, the ampere can be modified by adding a prefix that multiplies it by a power of 10.

SI multiples of ampere (A)

Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 A dA deciampere 101 A daA decaampere
10−2 A cA centiampere 102 A hA hectoampere
10−3 A mA milliampere 103 A kA kiloampere
10−6 A μA microampere 106 A MA megaampere
10−9 A nA nanoampere 109 A GA gigaampere
10−12 A pA picoampere 1012 A TA teraampere
10−15 A fA femtoampere 1015 A PA petaampere
10−18 A aA attoampere 1018 A EA exaampere
10−21 A zA zeptoampere 1021 A ZA zettaampere
10−24 A yA yoctoampere 1024 A YA yottaampere
10−27 A rA rontoampere 1027 A RA ronnaampere
10−30 A qA quectoampere 1030 A QA quettaampere

See also[edit]

  • Ammeter
  • Ampacity (current-carrying capacity)
  • Electric current
  • Electric shock
  • Hydraulic analogy
  • Magnetic constant
  • Orders of magnitude (current)

References[edit]

  1. ^ Jones, Daniel (2011). Roach, Peter; Setter, Jane; Esling, John (eds.). Cambridge English Pronouncing Dictionary (18th ed.). Cambridge University Press. ISBN 978-0-521-15255-6.
  2. ^ Wells, John C. (2008). Longman Pronunciation Dictionary (3rd ed.). Longman. ISBN 978-1-4058-8118-0.
  3. ^ «ampere». Merriam-Webster.com Dictionary. Retrieved 29 September 2020.
  4. ^ «2. SI base units», SI brochure (8th ed.), BIPM, archived from the original on 7 October 2014, retrieved 19 November 2011
  5. ^ SI supports only the use of symbols and deprecates the use of abbreviations for units.«Bureau International des Poids et Mesures» (PDF). 2006. p. 130. Archived from the original (PDF) on 14 August 2017. Retrieved 21 November 2011.
  6. ^ a b BIPM (20 May 2019). «Mise en pratique for the definition of the ampere in the SI». BIPM. Retrieved 18 February 2022.
  7. ^ «2.1. Unit of electric current (ampere)», SI brochure (8th ed.), BIPM, archived from the original on 3 February 2012, retrieved 19 November 2011
  8. ^ Base unit definitions: Ampere Archived 25 April 2017 at the Wayback Machine Physics.nist.gov. Retrieved on 28 September 2010.
  9. ^ Draft Resolution A «On the revision of the International System of units (SI)» to be submitted to the CGPM at its 26th meeting (2018) (PDF), archived from the original (PDF) on 29 April 2018, retrieved 28 October 2018
  10. ^ Bodanis, David (2005), Electric Universe, New York: Three Rivers Press, ISBN 978-0-307-33598-2
  11. ^ Kowalski, L (1986), «A short history of the SI units in electricity», The Physics Teacher, Montclair, 24 (2): 97–99, Bibcode:1986PhTea..24…97K, doi:10.1119/1.2341955, archived from the original on 14 February 2002
  12. ^ History of the ampere, Sizes, 1 April 2014, archived from the original on 20 October 2016, retrieved 20 September 2023
  13. ^ a b International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on 4 June 2021, retrieved 16 December 2021
  14. ^ Monk, Paul MS (2004), Physical Chemistry: Understanding our Chemical World, John Wiley & Sons, ISBN 0-471-49180-2, archived from the original on 2 January 2014
  15. ^ Serway, Raymond A; Jewett, JW (2006). Serway’s principles of physics: a calculus based text (Fourth ed.). Belmont, CA: Thompson Brooks/Cole. p. 746. ISBN 0-53449143-X. Archived from the original on 21 June 2013.
  16. ^ Beyond the Kilogram: Redefining the International System of Units, US: National Institute of Standards and Technology, 2006, archived from the original on 21 March 2008, retrieved 3 December 2008.
  17. ^ a b «Appendix 2: Practical realisation of unit definitions: Electrical quantities», SI brochure, BIPM, archived from the original on 14 April 2013.
  18. ^ «ampere (A)». www.npl.co.uk. Retrieved 21 May 2019.
  19. ^ The International System of Units (SI) (PDF) (8th ed.), Bureau International des Poids et Mesures, 2006, p. 144, archived (PDF) from the original on 5 November 2013.

External links[edit]

  • The NIST Reference on Constants, Units, and Uncertainty
  • NIST Definition of ampere and μ0

Биография Андре-Мари Ампер

Выдающийся французский учёный, физик, математик и химик, в честь которого названа одна из основных электрических величин — единица силы тока — ампер. Автор самого термина «электродинамика» как наименования учения об электричестве и магнетизме, один из основоположников этого учения. Член Парижской академии наук, Лондонского и Эдинбургского королевских обществ, иностранный член многих академий, в том числе Петербургской и ряда других научных учреждений. 

Детство и юность 

Предки Андре Мари Ампера были ремесленниками, жившими в окрестностях Лиона. Их профессиональный и культурный уровень быстро возрастал от поколения к поколению, и прадед учёного, Жан Жозеф был не только опытным каменотёсом, но и выполнял сложные строительные и реставрационные работы, а его сын Франсуа уже стал типичным просвещённым городским буржуа, представителем довольно зажиточного третьего сословия, и женился на дворянке. Отец Андре Мари, Жан Жак Ампер получил хорошее образование, владел древними языками, составил себе прекрасную библиотеку, живо интересовался идеями просветителей. Воспитывая детей, он вдохновлялся педагогическими принципами Руссо. Его политическим идеалом была конституционная монархия. 

Революция застала Жан Жака Ампера на купленной незадолго до этого должности королевского прокурора и королевского советника в Лионе. Падение Бастилии семья Амперов встретила с энтузиазмом. Но вскоре на неё обрушилась беда. Жан Жак придерживался умеренных взглядов, и поплатился за это. В Лионе начал свирепствовать одержимый мистическими идеями лютый якобинец, который клеветал на ни в чём не повинных людей и именем революции вместе со своими подручными обрушивал на них кары. Лионцы восстали против зверств якобинцев, восстание было подавлено и жирондист Жан Жак Ампер (хотя его действия, фактически, были, как раз, продиктованы намерением спасти вожаков-якобинцев от ярости толпы) был гильотинирован 24 ноября 1793. Это было страшное потрясение для Андре Мари и всей его семьи (к тому же перенесшей недавно ещё один удар — от туберкулёза умерла Антуанетта, старшая из сестёр). 

Можно сказать, что спасли Андре Мари, вернули его к жизни книги. Читать он начал примерно с четырёх лет, в 14 лет залпом прочитал все 20 томов «Энциклопедии» Дидро и Д`Аламбера, чтобы читать труды Бернулли и Эйлера, в несколько недель изучил латинский язык. Чтение вообще было не только главным, но и единственным источником его знаний. Других учителей у него не было, он никогда не ходил в школу, не сдал за всю свою жизнь ни одного экзамена. Но он постоянно и много черпал из книг. Но Ампер не просто читал, он изучал, творчески усваивая прочитанное. Не случайно уже в 12 -14 лет он начал представлять математические мемуары в Лионскую академию, писал научные труды по ботанике, изобретал новые конструкции воздушных змеев, трудился над созданием нового международного языка и даже совмещал всё это с сочинением эпической поэмы.

Перенесённые душевные травмы почти на два года выбили Андре Мари из колеи. Только к 20 годам он вновь обретает тягу к книгам и знаниям. Но он по-прежнему, на взгляд многих окружающих, ведёт себя странно. Часто бродит в одиночестве, неуклюжий и неряшливо одетый, порой громко и размеренно скандируя латинские стихи, или разговаривая сам с собой. К тому же, он очень близорук (он узнает об этом только приобретя очки, что стало для него знаменательным событием!). Наверное, одним из главных импульсов, вернувших Ампера к активной жизни, стала его встреча с золотоволосой Катрин Каррон. Ампер влюбился сразу и навсегда, но согласия на свадьбу удалось добиться только через три года. Большую поддержку Амперу оказала Элиза, сестра Катрин, раньше других понявшая и оценившая его редкостные душевные качества. В августе 1800 родился сын Амперов, которого в честь деда назвали Жан Жаком. 

В Бурге и Лионе 

Ещё до женитьбы Ампер начал преподавать, давая частные уроки по математике. Теперь же ему удалось выхлопотать место учителя в Центральной школе г. Бурга. Пройдя в феврале 1802 собеседование в Комиссии, он был признан подготовленным для проведения занятий. Обстановка в бургской школе была убогой, и Ампер пытался хотя бы немного усовершенствовать физический и химический кабинеты, хотя денег для этого ни у школы, ни, тем более, у учителя не было. Жалование было очень небольшим, а приходилось жить отдельно от жены и ребёнка, оставшихся в Лионе. Хотя чем могла помогала мать Ампера, ему приходилось искать дополнительного заработка, давая ещё уроки в частном пансионе Дюпра и Оливье. 

Несмотря на большую педагогическую нагрузку, Ампер не оставляет научную работу. Именно в это время во вступительной лекции в Центральной школе в 1802, а ещё раньше — на заседании Лионской академии, в присутствии Вольта, он впервые высказывает мысль, что магнитные и электрические явления могут быть объяснены, исходя из единых принципов. 

Не ослабевают и его усилия в области математики. Здесь на первый план выходят исследования по теории вероятностей. Они были замечены в Академии наук, где, в частности, на них обратил внимание Лаплас. Это явилось основанием для признания Ампера подходящим на должность преподавателя в открывавшемся тогда Лионском лицее. Его кандидатура была выдвинута Д`Аламбером. В апреле 1803 декретом Консульства Ампер был назначен на желанное для него место преподавателя лицея. Однако, Ампер оставался в Лионе меньше двух лет. 

Уже в середине октября 1804 он был зачислен на должность репетитора Политехнической школы в Париже и переехал туда. 

Первое десятилетие в Париже 

Переезд в Париж произошёл вскоре после того, как Ампер овдовел. Потеря обожаемой жены повергла его в отчаяние и религиозное смятение. Может быть, ещё и поэтому Ампер, несмотря на мольбы его матери, поспешил оставить Лион, чтобы начать в Париже преподавание в организованной десять лет назад Политехнической школе. 

Начав работать репетитором, Ампер уже в 1807 приступил к самостоятельным занятиям, а вскоре он стал профессором математического анализа. Вскоре в Политехнической школе появился 24-летний Араго, с которым Ампер проводил впоследствии важные совместные исследования. Отношение к Амперу коллег, среди которых было немало действительно крупных учёных, было вполне благожелательным, его работа шла успешно, но душевная рана, нанесённая потерей жены, была мучительной.

Движимые лучшими чувствами друзья Ампера познакомили его с семейством, в котором была дочь «на выданье», 26-летняя Жанна Франсуаза. Жертвой торгашеской алчности и грубого эгоизма этой женщины и всего её семейства вскоре и стал доверчивый, простодушный и беззащитный в своей наивности Ампер, которого через некоторое время попросту выгнали из дома, и ему пришлось обрести временный кров в Министерстве внутренних дел. 

 

Число профессиональных обязанностей Ампера тем временем возрастало. Он назначается на должность профессора математического анализа и экзаменатора по механике в первом отделении Политехнической школы, работает (до 1810) в Консультативном бюро искусств и ремёсел и с осени 1808 в должности главного инспектора университета. Эта последняя работа, взяться за которую Ампера вынудили стеснённые материальные обстоятельства, требовала постоянных разъездов, отнимала особенно много времени и сил. Он отдал этой изнурительной работе 28 лет, и последняя командировка закончилась на дороге в Марсель в 1836 его кончиной. 

Перегрузка работой и житейские невзгоды не могли не отразиться на научной продуктивности Ампера. Это особенно заметно на его исследованиях в области математики, хотя за ним сохранялось почётное право посещать заседания Академии наук и представлять мемуары. В меньшей мере спад научной активности коснулся химии, с видными представителями которой Ампер плодотворно общался. Почти весь 1808 его увлекали идеи, которые впоследствии стали относить к области атомистики. Но периодом резкого взлета научной активности, временем его главных достижений оказались годы после его избрания в 1814 в Академию наук. 

После избрания в Академию 

Ампер был избран в число членов Парижской Академии наук по секции геометрии 28 ноября 1814. Круг его научных и педагогических интересов к тому времени уже вполне определился, и ничто, казалось бы, не предвещало здесь заметных изменений. Но пора этих изменений уже приближалась, близилось второе десятилетие XIX века, время самых главных научных свершений Ампера. В 1820 Ампер узнал об опытах, которые незадолго до того проводил датский физик Ханс Кристиан Эрстед. Он обнаружил, что протекающий по проводу ток оказывает воздействие на расположенную возле провода магнитную стрелку. 4 и 11 сентября Араго сделал в Париже сообщение об этих работах Эрстеда и даже повторил некоторые из его экспериментов.

Большого интереса у академиков это, впрочем, не вызвало, но Ампера захватило полностью. Вопреки своему обыкновению, он выступил здесь не только как теоретик, но занялся в маленькой комнатке своей скромной квартиры проведением опытов, для чего даже собственноручно изготовил столик; эта реликвия сохраняется поныне в Коллеж де Франс. Он отложил все остальные дела и 18 и 25 сентября 1820 сделал свои первые сообщения об электромагнетизме. Фактически за эти две недели Ампер пришёл к своим самым главным научным результатам. Влияние этих трудов Ампера на многие отрасли науки — от физики атома и элементарных частиц до электротехники и геофизики — невозможно переоценить. 

 

В 1785-88 Шарль Огюстен Кулон провёл свои классические экспериментальные исследования законов взаимодействия электрических зарядов и магнитных полюсов. Эти опыты были в русле той грандиозной научной программы, которая была намечена трудами самого Ньютона; имея в качестве великого образца закон всемирного тяготения, изучать все возможные типы имеющихся в природе сил. 

Многим тогда казалось, что между электричеством и магнетизмом — полный параллелизм: что есть электрические, а есть и магнитные заряды, и у мира электрических явлений есть во всем подобный ему мир явлений магнитных. Открытие Эрстеда многими толковалось тогда так, что под действием тока провод, по которому этот ток протекает, намагничивается, а потому и действует на магнитную стрелку. Ампер выдвинул принципиально новую, радикальную и даже, на первый взгляд, дерзкую идею: никаких магнитных зарядов в природе вообще не существует, есть только электрические заряды, и магнетизм возникает только из-за движения электрических зарядов, т. е. из-за электрических токов. Прошло без малого двести лет с того момента, когда Ампер выступил с этой гипотезой, и, казалось бы, пора разобраться, был ли он прав (и тогда название «гипотеза» делается неуместным), или же от неё нужно отказаться.

 

Первое впечатление: гипотезе Ампера противоречит даже сам факт существования постоянных магнитов: ведь никаких токов, ответственных за возникновение магнетизма, здесь, вроде бы, нет! Ампер возражает: магнетизм порождается огромным числом крошечных электрических атомных контуров тока (можно только поражаться, что такая глубочайшая идея могла появиться в ту пору, когда не только ещё не знали ничего об устройстве атомов, но даже еще не существовало и слово «электрон»!) Каждый такой контур выступает как «магнитный листок» — элементарный магнитный двухполюсник. Этим и объясняется, почему магнитные заряды одного знака — «магнитные монополи», в отличие от монополей электрических, в природе не встречаются.

Могила Ампера и его сына

Почему же всё-таки и поныне «гипотеза»? Ведь уже не раз казалось, что найдены «магниты», в которых электрических зарядов нет. Вот, к примеру, нейтрон. У этой частицы нулевой электрический заряд, но есть магнитный момент. Опять «момент», т. е. опять магнитный двухполюсник, и его появление вновь объясняется в нынешней теории элементарных частиц «микроскопическими» токами, только теперь уже не внутри атома, а внутри нейтрона. Так можно ли уверенно утверждать, что магнетизм всегда порождается движением электрических зарядов? Гипотеза Ампера в такой заострённой формулировке принимается не всеми теоретиками. Больше того, некоторые варианты теории говорят о том, что магнитные монополи («однополюсники») должны проявляться, но только при огромных, недостижимых для нас сегодня энергиях. 

Гипотеза Ампера явилась важным принципиальным шагом к утверждению идеи о единстве природы. Но она поставила перед исследователями ряд новых вопросов. В первую очередь, потребовалось дать полную и замкнутую теорию взаимодействия токов. Эту задачу с подлинным блеском, действуя как теоретик и как экспериментатор, решил сам Ампер. Чтобы найти, как взаимодействуют токи в различных контурах, ему пришлось сформулировать законы магнитного взаимодействия отдельных элементов тока («Закон Ампера») и воздействия токов на магниты («правило Ампера»). По существу, была создана новая наука об электричестве и магнетизме, и даже термин «Электродинамика» был введён одним из замечательных ученых прошлого, Андре Мари Ампером.

Электрический ток

По проводам течет электрический ток. Причем он именно «течет», практически как вода. Представим, что вы — счастливый фермер, который решил полить свой огород из шланга. Вы чуть-чуть приоткрыли кран, и вода сразу же побежала по шлангу. Медленно, но все-таки побежала.

Сила струи очень слабая. Потом вы решили, что напор нужен побольше и открыли кран на полную катушку. В результате струя хлынет с такой силой, что ни один помидор не останется без внимания, хотя в обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете два ведра из двух шлангов. У зеленого напор сильнее, у желтого — слабее. Быстрее наполнится то ведро, в которое льется вода из шланга с сильным напором. Все дело в том, что объем воды за равный промежуток времени из двух разных шлангов тоже разный. Иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Если мы возьмем проводник с током, то будет происходить то же самое: заряженные частицы будут двигаться по проводнику, как и молекулы воды. Если больше заряженных частиц будет двигаться по проводнику, то «напор» тоже увеличится.

  • Электрический ток — это направленное движение заряженных частиц.

Сила тока

Сразу возникает потребность в величине, которой мы будем «напор» электрического тока измерять. Такая, чтобы она зависела от количества частиц, которые протекают по проводнику.

Сила тока — это физическая величина, которая показывает, какой заряд прошел через проводник за единицу времени.

Как обозначается сила тока?

Сила тока обозначается буквой I

Сила тока

I = q/t

I — сила тока [A]

q — заряд [Кл]

t — время [с]

Сила тока измеряется в амперах. Единица измерения выбрана не просто так.

Во-первых, она названа в честь физика Андре-Мари Ампера, который занимался изучением электрических явлений. А во-вторых, единица этой величины выбрана на основе явления взаимодействия двух проводников.

Андре-Мари Ампер

Здесь аналогии с водопроводом провести, увы, не получится. Шланги с водой не притягиваются и не отталкиваются вблизи друг друга (а жаль, было бы забавно).

Когда ток проходит по двум параллельным проводникам в одном направлении, проводники притягиваются. А когда в противоположном направлении (по этим же проводникам) — отталкиваются.

два параллельных проводника

За единицу силы тока 1 А принимают силу тока, при которой два параллельных проводника длиной 1 м, расположенные на расстоянии 1 м друг от друга в вакууме, взаимодействуют с силой 0,0000002 Н.

Задача

Найти силу тока в цепи, если за 2 секунды в ней проходит заряд, равный 300 мКл.

Решение:

Возьмем формулу силы тока

I = q/t

Подставим значения

I = 300 мКл / 2 с = 150 мА

Ответ: сила тока в цепи равна 150 мА

Чтобы хорошо запомнить теорию, нужно много практики. Классический курс по физике для 10 класса в онлайн-школе Skysmart — отличная возможность попрактиковаться в решении задач.

Проводники и диэлектрики

Некоторые делят мир на черное и белое, а мы — на проводники и диэлектрики.

  • Проводники — это материалы, которые проводят электрический ток. Самыми лучшими проводниками являются металлы.
  • Диэлектрики — материалы, которые не проводят электрический ток. Изи!

Проводники

Диэлектрики

Медь, железо, алюминий, олово, свинец, золото, серебро, хром, никель, вольфрам

Воздух, дистиллированная вода, поливинилхлорид, янтарь, стекло, резина, полиэтилен, полипропилен, полиамид, сухое дерево, каучук

То, что диэлектрик не проводит электрический ток, не значит, что он не может накапливать заряд. Накопление заряда не зависит от возможности его передавать.

Направление тока

Раньше в учебниках по физике писали так: когда-то давно решили, что ток направлен от плюса к минуса, а потом узнали, что по проводам текут электроны. Но электроны эти — отрицательные, а значит к минусу идти не могут. Но раз уже условились о направлении, поэтому оставим, как есть. Вопрос тогда возникал у всех: почему нельзя поменять направление тока? Но ответ так никто и не получил.

Сейчас пишут немного иначе: положительные частицы текут по проводнику от плюса к минусу, туда и направлен ток. Здесь вопросов ни у кого не возникает.

Так и какая версия верна?

На самом деле, обе. Носители заряда в каждом типе материала разные. В металлах — это электроны, в электролитах — ионы. У каждого типа частиц свои знаки и потребность в том, чтобы бежать к противоположно заряженному полюса источника тока.

Не будем же мы для каждого типа материала выбирать направление тока, чтобы решить задачу! Поэтому принято направлять ток от плюса к минусу. В большинстве задач школьного курса направление тока роли не играет, но есть то самое коварное меньшинство, где этот момент будет очень важным. Поэтому запомните — направляем ток от плюса к минусу.

Направление тока от плюса к минусу

Источник тока

Вода в шланге берется из водопровода, ключа с водой в земле — в общем, не из ниоткуда. Электрический ток тоже имеет свой источник.

В качестве источника может выступить, например, гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения. По сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Амперметр

Мы знаем, куда ток направлен, в чем измеряется сила тока, как ее вычислить, зная заряд и время, за которое этот заряд прошел. Осталось только измерить.

Прибор для измерения силы тока называется амперметр. Его включают в электрическую цепь последовательно с тем проводником, в котором ток измеряют.

что такое амперметр

Амперметры бывают очень разными по принципу действия: электромагнитные, магнитоэлектрические, электродинамические, тепловые и индукционные — и это только самые распространенные.

Мы рассмотрим только принцип действия теплового амперметра, потому что для понимания принципа действия других устройств необходимо знать, что такое магнитное поле и катушки.

Тепловой амперметр основан на свойстве тока нагревать провода. Устроен так: к двум неподвижным зажимам присоединена тонкая проволока. Эта тонкая проволока оттянута вниз шелковой нитью, связанной с пружиной. По пути эта нить петлей охватывает неподвижную ось, на которой закреплена стрелка. Измеряемый ток подводится к неподвижным зажимам и проходит через проволоку (на рисунке стрелками показан путь тока).

Под действием тока проволока немного нагреется, из-за чего удлинится, вследствие этого шелковая нить, прикрепленная к проволоке, оттянется пружиной. Движение нити повернет ось, а значит и стрелку. Стрелка покажет величину измерения.

тепловой амперметр

Понравилась статья? Поделить с друзьями:
  • Пистолет с прикладом немецкий
  • Самые сложные предложения на немецком
  • Все заглавные буквы английского алфавита
  • Военная техника перевод на английский
  • Описание про тигра на английском языке с переводом